Post-translational regulation of P2X receptor channels: modulation by phospholipids
نویسندگان
چکیده
P2X receptor channels mediate fast excitatory signaling by ATP and play major roles in sensory transduction, neuro-immune communication and inflammatory response. P2X receptors constitute a gene family of calcium-permeable ATP-gated cation channels therefore the regulation of P2X signaling is critical for both membrane potential and intracellular calcium homeostasis. Phosphoinositides (PIPn) are anionic signaling phospholipids that act as functional regulators of many types of ion channels. Direct PIPn binding was demonstrated for several ligand- or voltage-gated ion channels, however no generic motif emerged to accurately predict lipid-protein binding sites. This review presents what is currently known about the modulation of the different P2X subtypes by phospholipids and about critical determinants underlying their sensitivity to PIPn levels in the plasma membrane. All functional mammalian P2X subtypes tested, with the notable exception of P2X5, have been shown to be positively modulated by PIPn, i.e., homomeric P2X1, P2X2, P2X3, P2X4, and P2X7, as well as heteromeric P2X1/5 and P2X2/3 receptors. Based on various results reported on the aforementioned subtypes including mutagenesis of the prototypical PIPn-sensitive P2X4 and PIPn-insensitive P2X5 receptor subtypes, an increasing amount of functional, biochemical and structural evidence converges on the modulatory role of a short polybasic domain located in the proximal C-terminus of P2X subunits. This linear motif, semi-conserved in the P2X family, seems necessary and sufficient for encoding direct modulation of ATP-gated channels by PIPn. Furthermore, the physiological impact of the regulation of ionotropic purinergic responses by phospholipids on pain pathways was recently revealed in the context of native crosstalks between phospholipase C (PLC)-linked metabotropic receptors and P2X receptor channels in dorsal root ganglion sensory neurons and microglia.
منابع مشابه
A Dual Polybasic Motif Determines Phosphoinositide Binding and Regulation in the P2X Channel Family
Phosphoinositides modulate the function of several ion channels, including most ATP-gated P2X receptor channels in neurons and glia, but little is known about the underlying molecular mechanism. We identified a phosphoinositide-binding motif formed of two clusters of positively charged amino acids located on the P2X cytosolic C-terminal domain, proximal to the second transmembrane domain. For a...
متن کاملDirect modulation of P2X1 receptor-channels by the lipid phosphatidylinositol 4,5-bisphosphate.
The P2X(1) receptor-channels activated by extracellular ATP contribute to the neurogenic component of smooth muscle contraction in vascular beds and genitourinary tracts of rodents and humans. In the present study, we investigated the interactions of plasma membrane phosphoinositides with P2X(1) ATP receptors and their physiological consequences. In an isolated rat mesenteric artery preparation...
متن کاملControl of P2X3 channel function by metabotropic P2Y2 utp receptors in primary sensory neurons.
Purinergic signaling contributes significantly to pain mechanisms, and the nociceptor-specific P2X3 ATP receptor channel is considered a target in pain therapeutics. Recent findings suggesting the coexpression of metabotropic P2Y receptors with P2X3 implies that ATP release triggers the activation of both ionotropic and metabotropic purinoceptors, with strong potential for functional interactio...
متن کاملPhosphoinositides regulate P2X4 ATP-gated channels through direct interactions.
P2X receptors are ATP-gated nonselective cation channels highly permeable to calcium that contribute to nociception and inflammatory responses. The P2X(4) subtype, upregulated in activated microglia, is thought to play a critical role in the development of tactile allodynia following peripheral nerve injury. Posttranslational regulation of P2X(4) function is crucial to the cellular mechanisms o...
متن کاملMol082099 640..647
Purinergic signaling contributes significantly to pain mechanisms, and the nociceptor-specific P2X3 ATP receptor channel is considered a target in pain therapeutics. Recent findings suggesting the coexpression of metabotropic P2Y receptors with P2X3 implies that ATP release triggers the activation of both ionotropic and metabotropic purinoceptors, with strong potential for functional interactio...
متن کامل